
A Study on Automotive Management and
Orchestration System for Video Streaming over the

Internet
1Linh Van Ma, 2YoungYun Lee, 3Sung-Hoon Hong,

4Baeho Lee, 5Sung-June Baek, 6Jinsul Kim
School of Electronics and Computer Engineering

Chonnam National University, Gwangju, Korea
1linh.mavan@gmail.com, 2clonelee@chonnam.ac.kr,

3hsh@jnu.ac.kr, 4bhlee@jnu.ac.kr,
5tozero@jnu.ac.kr,6jsworld@chonnam.ac.kr

Abstract―Network functions virtualization offers a new way

to design, deploy and manage networking services. Besides, the
network virtualization management and orchestration provides
an ability to spin up network components with short time
constraints. The management allows rapid onboarding and
prevents system chaos. In this paper, we present a study on the
management system to control adaptive streaming servers. We
use the management system to start and stop the servers based
on current system load to optimize resources. We propose a
system using several performance metrics to monitor resources.
We implement the system using python, the adaptive streaming
servers using Node.js. Besides, we run all of the system
components in Docker to virtualize a cloud streaming system.
Experiment result indicated that the system reduce resource
consumption up to 10%.

Keywords―MANO; adaptive streaming; NFV; node.js; video
streaming

I. Introduction
The network today works on heterogeneous devices, such

as mobiles, computers, routers, switches. Cooperating these
devices sometimes causes vulnerable functions, or system
networks work inefficiently. The rise of significant
competition from major Internet technology companies, such
as Netflix, Microsoft, Skype, and Google has proposed a new
way of managing network resources. Network function
virtualization (NFV) [1, 2] describes how to virtualize and
manage network resources, such as storage, and computing in
a network. The virtual network functions manager (VNFM)
[3] is a fundamental component of the NFV management and
organization (MANO) architectural framework. The VNFM
works in concert with other NFV-MANO [3] functional
blocks, such as NFV orchestrator (NFVO) and the virtualized
infrastructure manager (VIM), to increase the interoperability
of software-defined networking elements and help standardize
the functions of virtual networking. These standard
components can increase new feature deployment and
velocity and help lower costs by providing a standard
framework for building NFV applications.

VNFs is an important essential to carry out the business
benefits outlined by NFV architectural. They provide real
network functions as real network components do but it
requires VNFM to manage virtualized components. VNFMs
are very necessary for the expansion, operational changes, add
new resources, and inform other VNFs function blocks in the

architecture NFV-MANO. During the life cycle of a VNF, the
management functions of VNF can track key performance
indicator (KPIs) of a VNF. KPI represents the efficiency of a
VNF throughout its performance. It is a measurable value and
is a key to achieve resource performance objective.

In this paper, we exploit the MANO structure to build a
video streaming system. The MANO manages streaming
servers. It can start/stop a server depending on the current load
of the system. In this way, we can manage network resource
efficiently. We also propose several metrics to monitor
resources. We use these metrics to find the best severing
streaming server according to a client’s request.

We arrange the order of articles as follows. In section 2,
we present an overview of Docker, Dynamic Adaptive
Streaming over HTTP (DASH) in cloud computing and
transcoding multimedia in the cloud. We present related
works in Section 3. In Section 4, we describe the system in
details including how we can manage streaming server based
on proposed metrics. In section 5, we present experiment and
discuss the results. Section 6 presents the findings with future
research directions.

II. Background Technology

A. Docker
Docker [4, 5] is a tool designed to make it easier to create,

deploy, and run applications by using containers. Containers
[6] allow developers to wrap up an application with all the
necessary components, such as libraries and other
dependencies, and deliver them all out as a package. Thanks
to the container, the developers can rest and assure that the
application will run on any other Linux machines regardless
of the computer may have some customized settings that differ
from the computer used for testing and writing the code.
Containers use shared operating systems. They are much more
efficient than hypervisors in terms of system resources. The
containers reside on the same Linux instance instead of
virtualizing the hardware. A comparison between virtual
machines (VMs) and Docker.

B. Adaptive Streaming
Adaptive bitrate streaming [7, 8, 10] is a technique used in

streaming multimedia over computer networks. It works by
detecting a user's bandwidth and CPU capacity in real time

and adjusting the quality of a video stream accordingly. It
requires the use of an encoder which can encode a single
source video at multiple bit rates. The player client switches
between streaming the different encodings depending on
available resources. The result: very little buffering, fast start
time and a good experience for both high-end and low-end
connections. Dynamic Adaptive Streaming over HTTP
(DASH), also known as MPEG-DASH, is an adaptive bitrate
streaming technique that enables high-quality streaming of
media content over the Internet delivered from conventional
HTTP web servers. MPEG-DASH works by breaking the
content into a sequence of small HTTP-based file segments,
each segment containing a short interval of playback time of
content that is potentially many hours in duration, such as a
movie or the live broadcast of a sports event. Video Streaming
is provided at a variety of bit rates. The alternated segments
are encoded at different bit rates it is then divided into small
pieces of segments with short play back time. The content is
played at an adaptive streaming client. It has algorithms which
automatically chooses the next optimal segment to download
and play back based on current network conditions. The
clients choose segments with the highest possible bit rate that
can be downloaded on time for playback without causing
stalls or buffering events in the playback. Thus, a MPEG-
DASH client can smoothly adapt to changing network
conditions, it also provides high-quality playback with fewer
stalls or buffering events.

III. Related Work
The growing demand for online distribution of high

quality and high throughput content is dominating today's
Internet infrastructure. This domination leads to quality of
experience (QoE) fluctuations on delivered content, and
unfairness between end users, while new network protocols,
technologies, and architectures, such as software defined
networking (SDN), are being developed for the future Internet.
The programmability, flexibility, and openness of these
emerging developments can significantly assist the
distribution of video over the Internet. The authors [10]
introduced a novel user-level fairness model UFair and its
hierarchical variant UFairHA, which orchestrated HAS media
streams using emerging network architectures and incorporate
three fairness metrics (video quality, switching impact, and
cost efficiency) to achieve user-level fairness in video
distribution. Their experimental results demonstrated the
performance and feasibility of their design for video
distribution over future networks.

In the research [11], the authors implemented and
evaluated a novel architecture that leveraged the benefits of
SDN to provide network assisted Adaptive Bitrate Streaming.
With clients retaining full control of their streaming
algorithms they showed that by this network assistance, both
the clients and the content providers benefited significantly
regarding QoE and content origin offloading. They also
illustrated the difficulty of the problem and the impact of
SDN-assisted streaming on QoE metrics using various well-
established player algorithms. Their results showed the
substantial improvement in cache bitrates indicating a rich
design space for jointly optimized SDN-assisted caching

architectures for video streaming applications.

IV. System Overview
In the streaming system, we have three main components.

First, a DASH management server is responsible for listening
requests from clients and directing those requests to content
servers based on selecting algorithms. Secondly, an uploading
and transcoding server makes uploaded files from clients to
DASH content. Finally, DASH (content delivery network)
CDN servers respond requests coming from clients and
provide video streaming to clients. Fig.1 illustrates the system
overview.

Fig.1. CDN-DASH streaming server system

The main server collects measurement information of
CDN DASH servers to redirect a request from a client to the
best serving server at the requesting time. We use seven
parameters to evaluate the performance of a DASH streaming
server. Regarding local measurement, we have; 1) Working
CPU, 2) Free memory, 3) Total memory, 4) Load average.
Regarding network measurement, we have; 5) Ping, 6)
Throughput upload, 7) Throughput download. The
management server also shares information about the order of
the servers for all servers through a synchronization
mechanism using a file-sharing protocol such as File Transfer
Protocol (FTP). DASH servers use this information for the
purpose of retrieving DASH files from other servers in case it
does not serve a transcoding request from a client. This
technique is a solution for sharing DASH files of a server
when it contains a multimedia video while other servers do
not have the video content. A server can retrieve DASH files
from other servers based on metric information from the
available parameters. For example, Server A and Server B has
the same DASH video, and Server A is faster than B 25%. If
Server C does have the video content, it can get 75% video
DASH files from A and 25% DASH files from B. Fig.2
describes data flow structure between the managed server and
DASH servers. Suppose that we have n servers, eight
measurement metrics m have difference weights 	w, i ∈{1,2, … ,8}.	The main server orders DASH servers based on
the total metric in (1) where m is the jth metric of the server
ith.

In the system, we have a VNFM managing other network
components, such as Element Management (EM), Element
Management Agent (EMA). As shown in Fig. 3, EMA acts as
a router to mediate between VNFM and EM. Each EM
manages a particular network component, such as
Management Server, Data Streaming Server.

M = ∑ w ∈[,…,] 	 (1)

Fig.2. Main server manages parameter from other servers

Fig.3. VNF DASH streaming system overview

V. System Overview
We implemented the system in Ubuntu 14.04. Server

applications are Node.js-based application. It runs on
containerized technology Docker version 1.12. Fig.4 shows
the structure of the streaming servers. In the experiment, we
use a Docker-based web interface application to test the
streaming system. VNFM manages server applications by
Docker start/stop command, Element Management Agent
(EMA) receives these command and start/stop application
correspondingly.

 We arrange three physical upload servers with mediocre
performance, two physical CDN DASH servers to provide
video streaming. Each server can start several Node.js
applications. The main server and the client web browser
running on a same physical computer but executed on Docker
to ensure that it is separate virtualize machines. The client
requests to upload video files to the upload servers. These files

are transcoded to DASH format. This job requires extensive
computation resource. Therefore, the VNFM will start new
upload servers if it recognizes that current system cannot
respond to client requests. The VNFM can also start new CDN
DASH servers if current DASH servers overload upon current
requests from clients. In this case, the new starting DASH
servers synchronize DASH files to its local disk based on
selected metric such as these server sync video files with the
most viewed.

Fig.4. CDN-DASH Streaming Server System Implementation

Fig.5. RAM consumption comparison of the system with Docker and NFV
orchestrator.

We calculated resource consumption by summarizing the
total CPU performance and RAM usage in a period of all
physical computers. We set up two scenarios to compare the
system performance between the system having Docker, NFV
orchestrator and the system having applications which only
run the physical servers.

In a client, we upload several files with different
resolutions. The resolution is up to 4K (2160p). We then
measure the system performance around 30 seconds in the

both scenarios. Fig.5 shows the RAM consume comparison
between the system with Docker and NFV Orchestrator and
the physical server without any management system. The blue
line indicates the RAM usage more than the red line because
the system managed resource efficiently.

Fig.6. Sever performance comparison between the system with orchestration
and without orchestration.

Moreover, Fig.6 shows the server performance
comparison between the system with orchestration and
without orchestration. As a result, the system with the
orchestration reduced transcoding time as well as server
performance when transcoding a multimedia file to DASH
content.

VI. Conclusion
After In this paper, we discussed the current issue emerged

in today virtual network technologies. When the number of
network devices increases in a network continuously, we
hardly manage them efficiently, and it usually causes latency
in the service response. Our study contributed two main points
as the following:

1. Discussion of network virtualization technologies such
as NFV management and organization and Docker container,
a containerized technology.

2. On the basis of our proposed metrics to manage DASH
servers, we implemented DASH streaming system using
MANO architecture. The result showed that the system
reduced resource consumption up to 10%.

In the future research, we tend to reduce space for DASH
content in the CDN.

Acknowledgments
This research was supported by Basic Science Research

Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science, and
Technology [Grant No. NRF-2017R1D1A1B03034429], and
also was supported by the MSIT (Ministry of Science and
ICT), Korea, under the ITRC (Information Technology
Research Center) support program (IITP-2017-2016-0-00314)
supervised by the IITP (Institute for Information &

communications Technology Promotion). Furthermore, this
research was supported by the IT R&D program of the MSIT
(Ministry of Science and ICT), Korea/NIPA (National IT
Industry Promotion Agency) 12221-14-1001, Next
Generation Network Computing Platform Testbed.

References

[1] Mijumbi, Rashid, Joan Serrat, Juan-luis Gorricho, Steven Latre,
Marinos Charalambides, and Diego Lopez. "Management and
orchestration challenges in network functions virtualization." IEEE
Communications Magazine 54, no. 1 (2016): 98-105.

[2] Han, Bo, Vijay Gopalakrishnan, Lusheng Ji, and Seungjoon Lee.
"Network function virtualization: Challenges and opportunities for
innovations." IEEE Communications Magazine 53, no. 2 (2015): 90-
97.

[3] Giotis, Kostas, Yiannos Kryftis, and Vasilis Maglaris. "Policy-based
orchestration of NFV services in Software-Defined Networks." In
Network Softwarization (NetSoft), 2015 1st IEEE Conference on, pp.
1-5. IEEE, 2015.

[4] Merkel, Dirk. "Docker: lightweight linux containers for consistent
development and deployment." Linux Journal 2014, no. 239 (2014): 2.

[5] Boettiger, Carl. "An introduction to Docker for reproducible research."
ACM SIGOPS Operating Systems Review 49, no. 1 (2015): 71-79.

[6] Felter, Wes, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. "An
updated performance comparison of virtual machines and linux
containers." In Performance Analysis of Systems and Software
(ISPASS), 2015 IEEE International Symposium On, pp. 171-172.
IEEE, 2015.

[7] De Cicco, Luca, Vito Caldaralo, Vittorio Palmisano, and Saverio
Mascolo. "Elastic: a client-side controller for dynamic adaptive
streaming over http (dash)." In Packet Video Workshop (PV), 2013
20th International, pp. 1-8. IEEE, 2013.

[8] Seufert, Michael, Sebastian Egger, Martin Slanina, Thomas Zinner,
Tobias Hobfeld, and Phuoc Tran-Gia. "A survey on quality of
experience of HTTP adaptive streaming." IEEE Communications
Surveys & Tutorials 17, no. 1 (2015): 469-492.

[9] Georgopoulos, Panagiotis, Yehia Elkhatib, Matthew Broadbent, Mu
Mu, and Nicholas Race. "Towards network-wide QoE fairness using
openflow-assisted adaptive video streaming." In Proceedings of the
2013 ACM SIGCOMM workshop on Future human-centric
multimedia networking, pp. 15-20. ACM, 2013.

[10] Mu, Mu, Matthew Broadbent, Arsham Farshad, Nicholas Hart, David
Hutchison, Qiang Ni, and Nicholas Race. "A scalable user fairness
model for adaptive video streaming over SDN-assisted future
networks." IEEE Journal on Selected Areas in Communications 34, no.
8 (2016): 2168-2184.

[11] Bhat, Divyashri, Amr Rizk, Michael Zink, and Ralf Steinmetz.
"Network Assisted Content Distribution for Adaptive Bitrate Video
Streaming." In Proceedings of the 8th ACM on Multimedia Systems
Conference, pp. 62-75. ACM, 2017.

